牛顿三大定律

王尚老师微信

推荐阅读

牛顿迭代法

王尚老师微信

2014.01.20 15:24

牛顿迭代法(Newton’s method)是一种数学计算求解法。

牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。

计算公式

设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。

解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f”(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B = A操作),然后A 再前进占领新的位置,B再跟上……直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置逼近的方法称之为迭代法。

牛顿迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基该方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用牛顿迭代算法解决问题,需要做好以下三个方面的工作:

一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

定理:gcd(a,b) = gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b。假设d是a,b的一个公约数,则有 a%d==0,b%d==0,而r = a – kb,因此r%d==0 ,因此d是(b,a mod b)的公约数

同理,假设d 是(b,a mod b)的公约数,则 b%d==0,r%d==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。其算法用C语言描述为:

  int Gcd_2(int a,int b)// 欧几里德算法求a,b的最大公约数

  {

  if (a<=0 || b<=0)//预防错误

  return 0;

  int temp;

  while (b > 0)//b总是表示较小的那个数,若不是则交换a,b的值

  {

  temp = a % b;//迭代关系式

  a = b; //是那个胆小鬼,始终跟在b的后面

  b = temp; //向前冲锋占领新的位置

  }

  return a;

  }

  从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b;根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。

  还有一个很典型的例子是斐波那契(Fibonacci)数列。斐波那契数列为:0、1、1、2、3、5、8、13、21、…,即 fib⑴=0; fib⑵=1;fib(n)=fib(n-1)+fib(n-2) (当n>2时)。

  在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型的迭代关系,所以我们可以考虑迭代算法。

  int Fib(int n) //斐波那契(Fibonacci)数列

  {

  if (n < 1)//预防错误

  return 0;

  if (n == 1 || n == 2)//特殊值,无需迭代

  return 1;

  int f1 = 1,f2 = 1,fn;//迭代变量

  int i;

  for(i=3; i<=n; ++i)//用i的值来限制迭代的次数

  {

  fn = f1 + f2; //迭代关系式

  f1 = f2;//f1和f2迭代前进,其中f2在f1的前面

  f2 = fn;

  }

  return fn;

  }

王尚老师微信

扫图关注王尚微信公众号teacherws,可免费获取价值98元视频资料:《物理重难点80讲》。